enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]

  3. Glossary of aerospace engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_aerospace...

    Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft.

  4. Wing configuration - Wikipedia

    en.wikipedia.org/wiki/Wing_configuration

    The aspect ratio is the span divided by the mean or average chord. [10] It is a measure of how long and slender the wing appears when seen from above or below. Low aspect ratio: short and stubby wing. Structurally efficient, high instantaneous roll rate, low supersonic drag.

  5. Chord (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Chord_(aeronautics)

    The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)

  6. Trapezoidal wing - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_wing

    Trapezoidal planform. In aeronautics, a trapezoidal wing is a straight-edged and tapered wing planform.It may have any aspect ratio and may or may not be swept. [1] [2] [3]The thin, unswept, short-span, low-aspect-ratio trapezoidal configuration offers some advantages for high-speed flight and has been used on a small number of aircraft types.

  7. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...

  8. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]

  9. Leading-edge cuff - Wikipedia

    en.wikipedia.org/wiki/Leading-edge_cuff

    The most successful NASA experimental results were obtained on a quite low 6:1 aspect ratio wing (Grumman Yankee AA-1), with a DLE placed at 57% of the semi-span. As the vortices (inboard cuff and wing tip) are efficient on a limited span length (about 1.5 times the local chord), a DLE alone is unable to preserve enough outboard lift to keep ...