Search results
Results from the WOW.Com Content Network
Quantifying mass transfer allows for design and manufacture of separation process equipment that can meet specified requirements, estimate what will happen in real life situations (chemical spill), etc. Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of ...
This rate can be quantified through the calculation and application of mass transfer coefficients for an overall process. These mass transfer coefficients are typically published in terms of dimensionless numbers, often including Péclet numbers, Reynolds numbers, Sherwood numbers, and Schmidt numbers, among others. [2] [3] [4]
Here, is the overall mass transfer coefficient, which could be determined by empirical correlations, is the surface area for mass transfer (particularly relevant in membrane-based separations), and ˙ is the mass flowrate of bulk fluid (e.g., mass flowrate of air in an application where water vapor is being separated from the air mixture). At ...
There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.
D is mass diffusivity (m 2 s −1) h is the convective mass transfer film coefficient (m s −1) Using dimensional analysis, it can also be further defined as a function of the Reynolds and Schmidt numbers: = (,) For example, for a single sphere it can be expressed as [citation needed]:
This equation permits the prediction of an unknown transfer coefficient when one of the other coefficients is known. The analogy is valid for fully developed turbulent flow in conduits with Re > 10000, 0.7 < Pr < 160, and tubes where L/d > 60 (the same constraints as the Sieder–Tate correlation). The wider range of data can be correlated by ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment which can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities.