Search results
Results from the WOW.Com Content Network
In physics, the Coriolis force is an inertial (or fictitious) force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force ...
The Coriolis force acts at right angles to the flow, and when it balances the pressure gradient force, the resulting flow is known as geostrophic. As stated above, the direction of flow is with the high pressure to the right of the flow in the Northern Hemisphere, and the high pressure to the left in the Southern Hemisphere. The direction of ...
the centrifugal force, the Coriolis force, and, for non-uniformly rotating reference frames, the Euler force. Scientists in a rotating box can measure the rotation speed and axis of rotation by measuring these fictitious forces. For example, Léon Foucault was able to show the Coriolis force that results from Earth's rotation using the Foucault ...
The Ekman layer is the layer in a fluid where there is a force balance between pressure gradient force, Coriolis force and turbulent drag. It was first described by Vagn Walfrid Ekman. Ekman layers occur both in the atmosphere and in the ocean. There are two types of Ekman layers.
Ekman transport is the net motion of fluid as the result of a balance between Coriolis and turbulent drag forces. In the picture above, the wind blowing North in the northern hemisphere creates a surface stress and a resulting Ekman spiral is found below it in the water column.
The diagram only shows a net flow from the poles to the equator. However mass conservation requires an additional flow from the equator toward the poles. If that flow was along the axis of rotation, that implies the circulation would be completed by a flow from the ones shown towards the axis of rotation, producing the desired effect.
The Ekman spiral occurs as a consequence of the Coriolis effect. The Ekman spiral is an arrangement of ocean currents: the directions of horizontal current appear to twist as the depth changes. [1] The oceanic wind driven Ekman spiral is the result of a force balance created by a shear stress force, Coriolis force and the water drag. This force ...
A schematic illustrating the relationship between motion of conducting fluid, organized into rolls by the Coriolis force, and the magnetic field the motion generates. [53] The Earth and most of the planets in the Solar System, as well as the Sun and other stars, all generate magnetic fields through the motion of electrically conducting fluids. [54]