enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.

  3. Activated complex - Wikipedia

    en.wikipedia.org/wiki/Activated_complex

    Endothermic reactions absorb energy from the surroundings, while exothermic reactions release energy. Some reactions occur spontaneously, while others necessitate an external energy input. The reaction can be visualized using a reaction coordinate diagram to show the activation energy and potential energy throughout the reaction.

  4. Exothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Exothermic_reaction

    An energy profile of an exothermic reaction. In an exothermic reaction, by definition, the enthalpy change has a negative value: ΔH = H products - H reactants < 0. where a larger value (the higher energy of the reactants) is subtracted from a smaller value (the lower energy of the products). For example, when hydrogen burns: 2H 2 (g) + O 2 (g ...

  5. Exothermic process - Wikipedia

    en.wikipedia.org/wiki/Exothermic_process

    According to the IUPAC, an exothermic reaction is "a reaction for which the overall standard enthalpy change ΔH⚬ is negative". [4] Some examples of exothermic process are fuel combustion, condensation and nuclear fission, [5] which is used in nuclear power plants to release large amounts of energy. [6]

  6. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    Van 't Hoff plot for an endothermic reaction. For an endothermic reaction, heat is absorbed, making the net enthalpy change positive. Thus, according to the definition of the slope: =, When the reaction is endothermic, Δ r H > 0 (and the gas constant R > 0), so

  7. Hammond's postulate - Wikipedia

    en.wikipedia.org/wiki/Hammond's_postulate

    This can be explained with reference to potential energy diagrams: Energy diagrams showing how to interpret Hammond's Postulate. In case (a), which is an exothermic reaction, the energy of the transition state is closer in energy to that of the reactant than that of the intermediate or the product.

  8. Reaction coordinate - Wikipedia

    en.wikipedia.org/wiki/Reaction_coordinate

    Diagram of a catalytic reaction, showing the energy level as a function of the reaction coordinate. For a catalyzed reaction, the activation energy is lower.. In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway.

  9. Endothermic process - Wikipedia

    en.wikipedia.org/wiki/Endothermic_process

    The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. [1] Thus, endo in endothermic refers to energy or heat going in, and exo in exothermic refers to energy or heat going out. In each term (endothermic and exothermic) the prefix ...