Search results
Results from the WOW.Com Content Network
Different proteins are degraded at different rates. Abnormal proteins are quickly degraded, whereas the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological ...
In molecular biology, protein catabolism is the breakdown of proteins into smaller peptides and ultimately into amino acids. Protein catabolism is a key function of digestion process. Protein catabolism often begins with pepsin, which converts proteins into polypeptides. These polypeptides are then further degraded.
The plants have both short-term and long-term mechanisms to prevent sieve element sap loss. [2] The short-term mechanism involves sap proteins, and the long-term mechanism involves callose, which helps to close the open channels in broken sieve plates .
Protein metabolism denotes the various biochemical processes responsible for the synthesis of proteins and amino acids (anabolism), and the breakdown of proteins by catabolism. The steps of protein synthesis include transcription, translation, and post translational modifications.
A carboxypeptidase (EC number 3.4.16 - 3.4.18) is a protease enzyme that hydrolyzes (cleaves) a peptide bond at the carboxy-terminal (C-terminal) end of a protein or peptide. This is in contrast to an aminopeptidases, which cleave peptide bonds at the N-terminus of proteins. Humans, animals, bacteria and plants contain several types of ...
The freed energy is stored as potential energy in ATP, carbohydrates, or proteins. Eventually, the energy is used for life processes such as moving, growth and reproduction. Plants and some bacteria can alternate between phototrophy and chemotrophy, depending on the availability of light.
Protein phosphorylation is the most abundant post-translational modification in eukaryotes. Phosphorylation can occur on serine , threonine and tyrosine side chains (in other words, on their residues) through phosphoester bond formation, on histidine , lysine and arginine through phosphoramidate bonds , and on aspartic acid and glutamic acid ...
Plants produce low amount of Gibberellic Acid, therefore is produced for industrial purposes by microorganisms. Industrially GA 3 can be produced by submerged fermentation, but this process presents low yield with high production costs and hence higher sale value, nevertheless other alternative process to reduce costs of its production is solid ...