Search results
Results from the WOW.Com Content Network
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...
Enthalpy of atomization is the amount of enthalpy change when bonds of the compound are broken and the component atoms are separated into single atoms ( or monoatom). Enthalpy of atomization is denoted by the symbol ΔH at. The enthalpy change of atomization of gaseous H 2 O is, for example, the sum of the HO–H and H–OH bond dissociation ...
[4] [5] Reverse electron transitions for all these types of excited molecules are also possible to return to their ground states, which can be designated as σ* → σ, π* → π, or π* → n. A transition in an energy level of an electron in a molecule may be combined with a vibrational transition and called a vibronic transition.
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.
From January 2008 to December 2012, if you bought shares in companies when Daniel M. Dickinson joined the board, and sold them when he left, you would have a 23.5 percent return on your investment, compared to a -2.8 percent return from the S&P 500.
More needs to be written about its relation to electron gain enthalpy, which will make things clearer for high school students. Some links too. —Preceding unsigned comment added by 121.247.66.179 12:18, 14 October 2007 (UTC)