Search results
Results from the WOW.Com Content Network
The resistance and conductance contribute to the loss in a transmission line. The total loss of power in a transmission line is often specified in decibels per metre (dB/m), and usually depends on the frequency of the signal. The manufacturer often supplies a chart showing the loss in dB/m at a range of frequencies.
Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.
In telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber.This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line.
Multiple empirical formulae exist that relate the loss factor to the load factor (Dickert et al. in 2009 listed nine [5]). Similarly, the ratio between the average and the peak current is called form coefficient k [ 6 ] or peak responsibility factor k , [ 7 ] its typical value is between 0.2 to 0.8 for distribution networks and 0.8 to 0.95 for ...
"Black box" model for transmission line. The terminal characteristics of the transmission line are the voltage and current at the sending (S) and receiving (R) ends. The transmission line can be modeled as a black box and a 2 by 2 transmission matrix is used to model its behavior, as follows:
Mismatch loss in transmission line theory is the amount of power expressed in decibels that will not be available on the output due to impedance mismatches and signal reflections. A transmission line that is properly terminated, that is, terminated with the same impedance as that of the characteristic impedance of the transmission line, will ...
a double circuit transmission line; two generators; a bus bar. Non-credible (also called "out-of-range") contingencies are not used in planning, as they are rare and their effects are hard to predict, for example, failures of: [4] an entire electrical substation; a transmission tower that carries more than two lines.
Loss of load in an electrical grid is a term used to describe the situation when the available generation capacity is less than the system load. [1] Multiple probabilistic reliability indices for the generation systems are using loss of load in their definitions, with the more popular [2] being Loss of Load Probability (LOLP) that characterizes a probability of a loss of load occurring within ...