enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Geometrically speaking, a positive integer m is a perfect cube if and only if one can arrange m solid unit cubes into a larger, solid cube. For example, 27 small cubes can be arranged into one larger one with the appearance of a Rubik's Cube, since 3 × 3 × 3 = 27. The difference between the cubes of consecutive integers can be expressed as ...

  3. Sum of four cubes problem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_four_cubes_problem

    The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.

  4. Catalan's conjecture - Wikipedia

    en.wikipedia.org/wiki/Catalan's_conjecture

    [1] [2] The integers 2 3 and 3 2 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. That is to say, that

  5. Sums of three cubes - Wikipedia

    en.wikipedia.org/wiki/Sums_of_three_cubes

    Semi-log plot of solutions of + + = for integer , , and , and .Green bands denote values of proven not to have a solution.. In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum.

  6. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [17] the largest number now known not to be a sum of ...

  7. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    A ramification of the difference of consecutive squares, Galileo's law of odd numbers states that the distance covered by an object falling without resistance in uniform gravity in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain distance during an arbitrary time ...

  8. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.

  9. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares? Are there infinitely many primes p such that p − 1 is a perfect square? In other words: Are there infinitely many primes of the form n 2 + 1? As of 2024, all four problems are unresolved.