Search results
Results from the WOW.Com Content Network
In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions , as the system evolves.
Rotation (angular displacement) of a planar figure around a point Rotational orbit v spin Relations between rotation axis, plane of orbit and axial tilt (for Earth) Mathematically, a rotation is a rigid body movement which, unlike a translation, keeps at least one point fixed. This definition applies to rotations in two dimensions (in a plane ...
Thus, to each orbit, we can associate a conjugacy class of a subgroup of G (that is, the set of all conjugates of the subgroup). Let (H) denote the conjugacy class of H. Then the orbit O has type (H) if the stabilizer G x of some/any x in O belongs to (H). A maximal orbit type is often called a principal orbit type.
The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...
Therefore, the speed of travel around the orbit is = =, where the angular rate of rotation is ω. (By rearrangement, ω = v / r .) Thus, v is a constant, and the velocity vector v also rotates with constant magnitude v , at the same angular rate ω .
A celestial object's axial tilt indicates whether the object's rotation is prograde or retrograde. Axial tilt is the angle between an object's rotation axis and a line perpendicular to its orbital plane passing through the object's centre. An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary.
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.