enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    Indexing consists of storing SIFT keys and identifying matching keys from the new image. Lowe used a modification of the k-d tree algorithm called the best-bin-first search method [14] that can identify the nearest neighbors with high probability using only a limited amount of computation.

  3. Outline of object recognition - Wikipedia

    en.wikipedia.org/wiki/Outline_of_object_recognition

    Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.

  4. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  5. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  6. Chessboard detection - Wikipedia

    en.wikipedia.org/wiki/Chessboard_detection

    In feature extraction, one seeks to identify image interest points, which summarize the semantic content of an image and, hence, offer a reduced dimensionality representation of one's data. [2] Chessboards - in particular - are often used to demonstrate feature extraction algorithms because their regular geometry naturally exhibits local image ...

  7. OpenCV - Wikipedia

    en.wikipedia.org/wiki/OpenCV

    The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.

  8. Computer vision - Wikipedia

    en.wikipedia.org/wiki/Computer_vision

    In image processing, the input is an image and the output is an image as well, whereas in computer vision, an image or a video is taken as an input and the output could be an enhanced image, an understanding of the content of an image or even behavior of a computer system based on such understanding.

  9. Harris corner detector - Wikipedia

    en.wikipedia.org/wiki/Harris_corner_detector

    The Harris corner detector is a corner detection operator that is commonly used in computer vision algorithms to extract corners and infer features of an image. It was first introduced by Chris Harris and Mike Stephens in 1988 upon the improvement of Moravec's corner detector. [1]