Ads
related to: gasoline nozzle diameter chart pdf
Search results
Results from the WOW.Com Content Network
A gasoline pump or fuel dispenser is a machine at a filling station that is used to pump gasoline (petrol), diesel, or other types of liquid fuel into vehicles. Gasoline pumps are also known as bowsers or petrol bowsers (in Australia and South Africa ), [ 2 ] [ 3 ] petrol pumps (in Commonwealth countries), or gas pumps (in North America ).
Beyond this point the nozzle diameter becomes the biggest diameter and starts to incur increasing drag. Nozzles are thus limited to the installation size and the loss in thrust incurred is a trade off with other considerations such as lower drag, less weight. Examples are the F-16 at Mach 2.0 [21] and the XB-70 at Mach 3.0. [22]
Nozzles can be described as convergent (narrowing down from a wide diameter to a smaller diameter in the direction of the flow) or divergent (expanding from a smaller diameter to a larger one). A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle ...
In 1975 the Vapor Recovery Gasoline Nozzle was an improvement on the idea of the original gasoline nozzle delivery system. The improved idea was the brain child of Mark Maine of San Diego, California, where Mark was a gas station attendant at a corporate owned and operated Chevron U.S.A. service station.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
is the density of the gas (kg/m 3) is the temperature of the gas (K) is the cross sectional area of the nozzle at the point of interest (m 2) is the cross sectional area of the nozzle at the sonic point, or the point where gas velocity is Mach 1 (m 2). Ideally this will occur at the nozzle throat.
The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry). The flow is compressible as the fluid is a gas. As the combustion gas enters the rocket nozzle, it is traveling at subsonic velocities.
Examples include fuel injectors for gasoline and diesel engines, atomizers for jet engines (gas turbines), [12] atomizers for injecting heavy fuel oil into combustion air in steam boiler injectors, and rocket engine injectors. Drop size is critical because the large surface area of a finely atomized spray enhances fuel evaporation rate.
Ads
related to: gasoline nozzle diameter chart pdf