enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications ...

  4. Squared deviations from the mean - Wikipedia

    en.wikipedia.org/wiki/Squared_deviations_from...

    Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for analysis of variance involve the partitioning of a ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    The pmf allows the computation of probabilities of events such as (>) = / + / + / = /, and all other probabilities in the distribution. Figure 4: The probability mass function of a discrete probability distribution. The probabilities of the singletons {1}, {3}, and {7} are respectively 0.2, 0.5, 0.3. A set not containing any of these points has ...

  6. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    It can be shown that the rank of () is as the addition of all its rows is equal to zero. Thus the conditions for Cochran's theorem are met. Cochran's theorem then states that Q 1 and Q 2 are independent, with chi-squared distributions with n − 1 and 1 degree of

  7. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    A little algebra shows that the distance between P and M (which is the same as the orthogonal distance between P and the line L) (¯) is equal to the standard deviation of the vector (x 1, x 2, x 3), multiplied by the square root of the number of dimensions of the vector (3 in this case).

  8. Irwin–Hall distribution - Wikipedia

    en.wikipedia.org/wiki/Irwin–Hall_distribution

    By the Central Limit Theorem, as n increases, the Irwin–Hall distribution more and more strongly approximates a Normal distribution with mean = / and variance = /.To approximate the standard Normal distribution () = (=, =), the Irwin–Hall distribution can be centered by shifting it by its mean of n/2, and scaling the result by the square root of its variance:

  9. Partition of sums of squares - Wikipedia

    en.wikipedia.org/wiki/Partition_of_sums_of_squares

    If the sum of squares were not normalized, its value would always be larger for the sample of 100 people than for the sample of 20 people. To scale the sum of squares, we divide it by the degrees of freedom, i.e., calculate the sum of squares per degree of freedom, or variance. Standard deviation, in turn, is the square root of the variance.