Ads
related to: predictive analytics and data miningquizntales.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.
It is the most widely-used analytics model. [2] In 2015, IBM released a new methodology called Analytics Solutions Unified Method for Data Mining/Predictive Analytics [3] [4] (also known as ASUM-DM), which refines and extends CRISP-DM.
For exchanging the extracted models—in particular for use in predictive analytics—the key standard is the Predictive Model Markup Language (PMML), which is an XML-based language developed by the Data Mining Group (DMG) and supported as exchange format by many data mining applications. As the name suggests, it only covers prediction models ...
Depending on definitional boundaries, predictive modelling is synonymous with, or largely overlapping with, the field of machine learning, as it is more commonly referred to in academic or research and development contexts. When deployed commercially, predictive modelling is often referred to as predictive analytics.
Business intelligence (BI) consists of strategies, methodologies, and technologies used by enterprises for data analysis and management of business information. [1] Common functions of BI technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text ...
The Data Mining Group is a consortium managed by the Center for Computational Science Research, Inc., a nonprofit founded in 2008. [17] The Data Mining Group also developed a standard called Portable Format for Analytics, or PFA, which is complementary to PMML.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
The materials in the Data Science and Predictive Analytics (DSPA) textbook have been peer-reviewed in the Journal of the American Statistical Association, [5] International Statistical Institute’s ISI Review Journal, [3] and the Journal of the American Library Association. [4] Many scholarly publications reference the DSPA textbook. [6] [7]
Ads
related to: predictive analytics and data miningquizntales.com has been visited by 1M+ users in the past month