Search results
Results from the WOW.Com Content Network
That is, the resulting spin operators for higher-spin systems in three spatial dimensions can be calculated for arbitrarily large s using this spin operator and ladder operators. For example, taking the Kronecker product of two spin- 1 / 2 yields a four-dimensional representation, which is separable into a 3-dimensional spin-1 ( triplet ...
Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):
Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...
The basic idea can be illustrated for the basic example of spin operators of quantum mechanics. For any set of right-handed orthogonal axes, define the components of this vector operator as , and , which are mutually noncommuting, i.e., [,] = and its cyclic permutations.
In physics, the Pauli–Lubanski pseudovector is an operator defined from the momentum and angular momentum, used in the quantum-relativistic description of angular momentum. It is named after Wolfgang Pauli and Józef Lubański. [1] It describes the spin states of moving particles. [2]
In quantum mechanics, the spinor spherical harmonics [1] (also known as spin spherical harmonics, [2] spinor harmonics [3] and Pauli spinors [4]) are special functions defined over the sphere. The spinor spherical harmonics are the natural spinor analog of the vector spherical harmonics .
In mathematics, a rotor in the geometric algebra of a vector space V is the same thing as an element of the spin group Spin(V).We define this group below. Let V be a vector space equipped with a positive definite quadratic form q, and let Cl(V) be the geometric algebra associated to V.
To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at each point.