Search results
Results from the WOW.Com Content Network
Composition over inheritance (or composite reuse principle) in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition (by containing instances of other classes that implement the desired functionality) over inheritance from a base or parent class. [2]
In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that ...
Method overriding, in object-oriented programming, is a language feature that allows a subclass or child class to provide a specific implementation of a method that is already provided by one of its superclasses or parent classes.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
OCaml chooses the last matching definition of a class inheritance list to resolve which method implementation to use under ambiguities. To override the default behavior, one simply qualifies a method call with the desired class definition. Perl uses the list of classes to inherit from as an
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
The factory method design pattern solves problems such as: How can an object's subclasses redefine its subsequent and distinct implementation? The pattern involves creation of a factory method within the superclass that defers the object's creation to a subclass's factory method.
The non-virtual interface pattern (NVI) controls how methods in a base class are overridden. Such methods may be called by clients and overridable methods with core functionality. [1] It is a pattern that is strongly related to the template method pattern. The NVI pattern recognizes the benefits of a non-abstract method invoking the subordinate ...