Search results
Results from the WOW.Com Content Network
In this example, the lambda expression (lambda (book) (>= (book-sales book) threshold)) appears within the function best-selling-books. When the lambda expression is evaluated, Scheme creates a closure consisting of the code for the lambda expression and a reference to the threshold variable, which is a free variable inside the lambda expression.
First-class functions have often only been supported in later revisions of the language, including C# 2.0 and Apple's Blocks extension to C, C++, and Objective-C. C++11 has added support for anonymous functions and closures to the language, but because of the non-garbage collected nature of the language, special care has to be taken for non ...
The state of an object cannot be changed after construction. This implies both that only read-only data is shared and that inherent thread safety is attained. Mutable (non-const) operations can then be implemented in such a way that they create new objects instead of modifying the existing ones.
In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable , as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure.
shared is used for shared data in multi-threading (as volatile was briefly used for in C++). inout is a wildcard used to allow functions that do not modify data (and thus are only concerned with the unqualified type of the data) to return the same qualified type as the input. const and immutable can also be used as storage class specifiers.
C++ – classes allow for similar data hiding and encapsulation; defining a class within a class provides similar structure (see Function object in C++) C++11 and later – via lambda expressions (see quicksort example above) [11] Eiffel – explicitly disallows nesting of routines to keep the language simple; does allow the convention of using ...
There are multiple ways to implement the flyweight pattern. One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state.
C++11 allowed lambda functions to deduce the return type based on the type of the expression given to the return statement. C++14 provides this ability to all functions. It also extends these facilities to lambda functions, allowing return type deduction for functions that are not of the form return expression;.