Search results
Results from the WOW.Com Content Network
Tracing the y component of a circle while going around the circle results in a sine wave (red). Tracing the x component results in a cosine wave (blue). Both waves are sinusoids of the same frequency but different phases. A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine ...
Since the cosine and sine functions are both periodic with period , the complex exponential is made up of cosine and sine waves. This means that Euler's formula (above) has the property such that if L {\displaystyle L} is the period of the function, then
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
By just amplitude-modulating these two 90°-out-of-phase sine waves and adding them, it is possible to produce the effect of arbitrarily modulating some carrier: amplitude and phase. A phasor for I/Q, and the resultant wave which is continually phase shifting, according to the phasor's frequency. Note that since this resultant wave is ...
The position at a given time t also depends on the phase φ, which determines the starting point on the sine wave. The period and frequency are determined by the size of the mass m and the force constant k , while the amplitude and phase are determined by the starting position and velocity .