Search results
Results from the WOW.Com Content Network
This may also be called the intrinsic permeability or specific permeability. These terms refer to the quality that the permeability value in question is an intensive property of the medium, not a spatial average of a heterogeneous block of material equation 2.28 [clarification needed] [further explanation needed]; and that it is a function of ...
In physics and engineering, permeation (also called imbuing) is the penetration of a permeate (a fluid such as a liquid, gas, or vapor) through a solid.It is directly related to the concentration gradient of the permeate, a material's intrinsic permeability, and the materials' mass diffusivity. [1]
Carbon-based compounds form the basis of all known life on Earth, and the carbon-nitrogen-oxygen cycle provides a small portion of the energy produced by the Sun, and most of the energy in larger stars (e.g. Sirius). Although it forms an extraordinary variety of compounds, most forms of carbon are comparatively unreactive under normal conditions.
Permeability is the ability of the membrane to allow the permeating gas to diffuse through the material of the membrane as a consequence of the pressure difference over the membrane, and can be measured in terms of the permeate flow rate, membrane thickness and area and the pressure difference across the membrane.
Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable. The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reaction 14 N + n → 14 C + 1 H. The most ...
[22]: 37 By removing the greenhouse gas carbon dioxide from the air, forests function as terrestrial carbon sinks, meaning they store large amounts of carbon in the form of biomass, encompassing roots, stems, branches, and leaves. Throughout their lifespan, trees continue to sequester carbon, storing atmospheric CO 2 long-term. [23]
Carbon is capable of forming many allotropes (structurally different forms of the same element) due to its valency (tetravalent). Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene.
In mineralogy, amorphous carbon is the name used for coal, carbide-derived carbon, and other impure forms of carbon that are neither graphite nor diamond.In a crystallographic sense, however, the materials are not truly amorphous but rather polycrystalline materials of graphite or diamond [2] within an amorphous carbon matrix.