enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    If the quadrilateral is rectangle, then equation simplifies further since now the two diagonals are of equal length as well: 2 a 2 + 2 b 2 = 2 e 2 {\displaystyle 2a^{2}+2b^{2}=2e^{2}} Dividing by 2 yields the Euler–Pythagoras theorem:

  3. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics , where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.

  4. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.

  5. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.

  6. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus has an inscribed circle, while a rectangle has a circumcircle. A rhombus has an axis of symmetry through each pair of opposite vertex angles, while a rectangle has an axis of symmetry through each pair of opposite sides. The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length.

  7. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  8. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Equidiagonal quadrilateral: the diagonals are of equal length. Bisect-diagonal quadrilateral: one diagonal bisects the other into equal lengths. Every dart and kite is bisect-diagonal. When both diagonals bisect another, it's a parallelogram. Ex-tangential quadrilateral: the four extensions of the sides are tangent to an excircle.

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.