Search results
Results from the WOW.Com Content Network
The rotational/orbital speeds of galaxies/stars do not follow the rules found in other orbital systems such as stars/planets and planets/moons that have most of their mass at the centre. Stars revolve around their galaxy's centre at equal or increasing speed over a large range of distances.
In the night sky over ESO's Very Large Telescope (VLT) observatory at Paranal, the Moon shines along with two bright companions: Venus and Jupiter. However, if two celestial bodies attain the same declination at the time of a conjunction in right ascension (or the same ecliptic latitude at a conjunction in ecliptic longitude), the one that is ...
Stars have a velocity relative to the Sun that causes proper motion (transverse across the sky) and radial velocity (motion toward or away from the Sun). The former is determined by plotting the changing position of the stars over many years, while the latter comes from measuring the Doppler shift of the star's spectrum caused by motion along ...
Stars slowly lose mass by the emission of a stellar wind from the photosphere. The star's magnetic field exerts a torque on the ejected matter, resulting in a steady transfer of angular momentum away from the star. Stars with a rate of rotation greater than 15 km/s also exhibit more rapid mass loss, and consequently a faster rate of rotation decay.
Consider the case where a distant star is motionless relative to the Sun, and the star is extremely far away, so that parallax may be ignored. In the rest frame of the Sun, this means light from the star travels in parallel paths to the Earth observer, and arrives at the same angle regardless of where the Earth is in its orbit.
The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "show no global rotation with respect to a set of distant extragalactic objects".
A star's direction remains nearly fixed due to its vast distance, but its right ascension and declination do change gradually due to precession of the equinoxes and proper motion, and cyclically due to annual parallax. The declinations of Solar System objects change very rapidly compared to those of stars, due to orbital motion and close proximity.
A multiple star system consists of two or more stars that appear from Earth to be close to one another in the sky. [dubious – discuss] This may result from the stars actually being physically close and gravitationally bound to each other, in which case it is a physical multiple star, or this closeness may be merely apparent, in which case it is an optical multiple star [a] Physical multiple ...