enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    This formula holds whether or not the cylinder is a right cylinder. [7] This formula may be established by using Cavalieri's principle. A solid elliptic right cylinder with the semi-axes a and b for the base ellipse and height h. In more generality, by the same principle, the volume of any cylinder is the product of the area of a base and the ...

  3. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The above formula is for the xy plane passing through the center of mass, which coincides with the geometric center of the cylinder. If the xy plane is at the base of the cylinder, i.e. offset by d = h 2 , {\displaystyle d={\frac {h}{2}},} then by the parallel axis theorem the following formula applies:

  4. Gurney equations - Wikipedia

    en.wikipedia.org/wiki/Gurney_equations

    The equations were first developed in the 1940s by Ronald Gurney [2] and have been expanded on and added to significantly since that time. The original paper by Gurney analyzed the situation of an exploding shell or bomb, a mass of explosives surrounded by a solid shell. Other researchers have extended similar methods of analysis to other ...

  5. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  6. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...

  7. Added mass - Wikipedia

    en.wikipedia.org/wiki/Added_mass

    The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor, relating the fluid acceleration vector to the resulting force vector on the body. [1]

  8. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    The center of mass of a body with an axis of symmetry and constant density must lie on this axis. Thus, the center of mass of a circular cylinder of constant density has its center of mass on the axis of the cylinder. In the same way, the center of mass of a spherically symmetric body of constant density is at the center of the sphere.

  9. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    In the rotating system, the moment of inertia, I, takes the role of the mass, m, and the angular velocity, , takes the role of the linear velocity, v. The rotational energy of a rolling cylinder varies from one half of the translational energy (if it is massive) to the same as the translational energy (if it is hollow).