enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    To see this, starting from a base tetrahedron with 4 vertices, each added tetrahedra adds at most 1 new vertex, so at least 4 more must be added to make a cube, which has 8 vertices. Inscribing tetrahedra inside the regular compound of five cubes gives two more regular compounds, containing five and ten tetrahedra.

  3. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.

  4. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Before the Renaissance, mathematics was divided into two main areas: arithmetic, regarding the manipulation of numbers, and geometry, regarding the study of shapes. [7] Some types of pseudoscience, such as numerology and astrology, were not then clearly distinguished from mathematics. [8] During the Renaissance, two more areas appeared.

  5. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    All 14 squares in a 3×3-square (4×4-vertex) grid. As well as counting spheres in a pyramid, these numbers can be used to solve several other counting problems. For example, a common mathematical puzzle involves counting the squares in a large n by n square grid. [11] This count can be derived as follows: The number of 1 × 1 squares in the ...

  6. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.

  7. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    Just as a 3D shape can be projected onto a flat sheet, so a 4-D shape can be projected onto 3-space or even onto a flat sheet. One common projection is a Schlegel diagram which uses stereographic projection of points on the surface of a 3-sphere into three dimensions, connected by straight edges, faces, and cells drawn in 3-space.

  8. T puzzle - Wikipedia

    en.wikipedia.org/wiki/T_puzzle

    The T-puzzle, a T shape can be assembled with the four pieces on the left. The T puzzle is a tiling puzzle consisting of four polygonal shapes which can be put together to form a capital T. The four pieces are usually one isosceles right triangle , two right trapezoids and an irregular shaped pentagon .

  9. Quadrant (plane geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrant_(plane_geometry)

    These are often numbered from 1st to 4th and denoted by Roman numerals: I (where the signs of the (x; y) coordinates are I (+; +), II (−; +), III (−; −), and IV (+; −). When the axes are drawn according to the mathematical custom, the numbering goes counter-clockwise starting from the upper right ("northeast") quadrant.