Search results
Results from the WOW.Com Content Network
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
For context, the volume of an Olympic-size swimming pool is 2,500 m 3 (88,000 cu ft). The average flow rate at the mouth of the Amazon is sufficient to fill more than 83 such pools each second. The estimated global total for all rivers is 1.2 × 10 6 m 3 /s (43 million cu ft/s), [1] of which the Amazon would be approximately 18%.
In hydrology, discharge is the volumetric flow rate (volume per time, in units of m 3 /h or ft 3 /h) of a stream.It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m 2 or ft 2). [1]
A hydrologic model is a simplification of a real-world system (e.g., surface water, soil water, wetland, groundwater, estuary) that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.
Regional Ocean Modeling System (ROMS) is a free-surface, terrain-following, primitive equations ocean model widely used by the scientific community for a diverse range of applications. The model is developed and supported by researchers at the Rutgers University , University of California Los Angeles and contributors worldwide.
GEBCO is the only intergovernmental body with a mandate to map the whole ocean floor. At the beginning of the project, only 6 per cent of the world's ocean bottom had been surveyed to today's standards; as of June 2022, the project had recorded 23.4 per cent mapped. About 14,500,000 square kilometres (5,600,000 sq mi) of new bathymetric data ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In oceanography, the sverdrup (symbol: Sv) is a non-SI metric unit of volumetric flow rate, with 1 Sv equal to 1 million cubic metres per second (264,172,052 US gal/s). [1] [2] It is equivalent to the SI derived unit cubic hectometer per second (symbol: hm 3 /s or hm 3 ⋅s −1): 1 Sv is equal to 1 hm 3 /s.