Search results
Results from the WOW.Com Content Network
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x; the magnitude of x with the sign set to +, regardless of the original sign of x.) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution.
The Q-statistic or q-statistic is a test statistic: . The Box-Pierce test outputs a Q-statistic (uppercase) which follows the chi-squared distribution . The Ljung-Box test is a modified version of the Box-Pierce test which provides better small sample properties
The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values. The quantile function does the opposite: it gives the q values as a function of the p values. Note that the portion of F(x) in red is a horizontal line segment.
Cochran's Q test should not be confused with Cochran's C test, which is a variance outlier test. Put in simple technical terms, Cochran's Q test requires that there only be a binary response (e.g. success/failure or 1/0) and that there be more than 2 groups of the same size.
Critical values of the studentized range distribution are used in Tukey's range test. [3]The studentized range is used to calculate significance levels for results obtained by data mining, where one selectively seeks extreme differences in sample data, rather than only sampling randomly.