Search results
Results from the WOW.Com Content Network
The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types.
Rhombic triacontahedron (Dual of icosidodecahedron) — V(3.5.3.5) arccos (- √ 5 +1 / 4 ) = 4 π / 5 144° Medial rhombic triacontahedron (Dual of dodecadodecahedron) — V(5. 5 / 2 .5. 5 / 2 ) arccos (- 1 / 2 ) = 2 π / 3 120° Great rhombic triacontahedron (Dual of great icosidodecahedron) — V(3 ...
[1] [2] There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual icosidodecahedron (right), which is the core of the dual compound.
Great rhombic triacontahedron; Great rhombidodecacron; Great rhombihexacron; Great stellapentakis dodecahedron; Great triakis icosahedron; Great triakis octahedron;
Rhombic Triacontahedron 5 radius = ~0.9994, vol. = 120 Ts Rhombic Triacontahedron 5+ radius = 1, vol. = 120 Es Rhombic Dodecahedron 6 space-filler, dual to cuboctahedron Rhombic Triacontahedron 7.5 radius = phi/sqrt(2) Icosahedron edges 1 = tetrahedron edge Cuboctahedron 20 edges 1, radii = 1 2F Cube 24
The rhombic hexecontahedron is a stellation of the rhombic triacontahedron. It is nonconvex with 60 golden rhombic faces with icosahedral symmetry. The rhombic enneacontahedron is a polyhedron composed of 90 rhombic faces, with three, five, or six rhombi meeting at each vertex. It has 60 broad rhombi and 30 slim ones.
Rhombic triacontahedron V(3.5) 2 Johannes Kepler coined the category semiregular in his book Harmonices Mundi (1619), including the 13 Archimedean solids , two infinite families ( prisms and antiprisms on regular bases), and two edge-transitive Catalan solids , the rhombic dodecahedron and rhombic triacontahedron .
The work was lost, and not rediscovered until the 19th century. One of its contributions was Descartes' theorem on total angular defect, which is closely related to Euler's polyhedral formula. [81] Leonhard Euler, for whom the formula is named, introduced it in 1758 for convex polyhedra more generally, albeit with an incorrect proof. [82]