Search results
Results from the WOW.Com Content Network
It participates in transcription, the cell cycle, and DNA repair. According to recent research, missense mutations in the RECQ1 gene may play a role in the development of familial breast cancer. DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription.
The gene is located in the mitochondrial matrix and mitochondrial nucleotides. Twinkle protein serves as the mitochondrial DNA helicase that binds to DNA and aids in unwinding the double helix of the DNA molecules. By allowing unwinding of the double helix, replication of mtDNA is achieved.
The hexameric protein complex formed by MCM proteins is a key component of the pre-replication complex (pre-RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins. The MCM complex consisting of this protein and MCM2, 6 and 7 proteins possesses DNA helicase activity, and may ...
For DNA polymerases to function, the double-stranded DNA helix has to be unwound to expose two single-stranded DNA templates for replication. DNA helicases are responsible for unwinding the double-stranded DNA during chromosome replication. Helicases in eukaryotic cells are remarkably complex. [106]
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. [1] [2] As a critical protein for cell division, MCM is also the target of various checkpoint pathways, such as the S-phase entry and S-phase arrest ...
The MCM complex consisting of MCM6 (this protein) and MCM2, 4 and 7 possesses DNA helicase activity, and may act as a DNA unwinding enzyme.The hexameric protein complex formed by the MCM proteins is a key component of the pre-replication complex (pre-RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins.
The initiator proteins are the proteins that recognize a specific DNA sequence within the origin of replication. The origin of replication is the site where the helicase attaches to the template strand and starts to unwind the DNA into two strands.