Search results
Results from the WOW.Com Content Network
Metallic hydrogen (recombination energy) 216 [2] Specific orbital energy of Low Earth orbit (approximate) 33.0: Beryllium + Oxygen: 23.9 [3] Lithium + Fluorine: 23.75 [citation needed] Octaazacubane potential explosive: 22.9 [4] Hydrogen + Oxygen: 13.4 [5] Gasoline + Oxygen –> Derived from Gasoline: 13.3 [citation needed] Dinitroacetylene ...
2 O) is an oxide of hydrogen and the most familiar oxygen compound. Hydrogen atoms are covalently bonded to oxygen in a water molecule but also have an additional attraction (about 23.3 kJ/mol per hydrogen atom) to an adjacent oxygen atom in a separate molecule. [127]
A water molecule weighs a little less than two free hydrogen atoms and an oxygen atom. The minuscule mass difference is the energy needed to split the molecule into three individual atoms (divided by c 2), which was given off as heat when the molecule formed (this heat had mass). Similarly, a stick of dynamite in theory weighs a little bit more ...
Theoretical total mass–energy of 1 gram of matter (25 GW·h) [177] 10 14 1.8×10 14 J Energy released by annihilation of 1 gram of antimatter and matter (50 GW·h) 3.75×10 14 J: Total energy released by the Chelyabinsk meteor. [178] 6×10 14 J: Energy released by an average hurricane per day [179] 10 15: peta-(PJ) > 10 15 J
Before the 2019 revision of the SI, the mole was defined as the amount of substance of a system that contains as many elementary entities as there are atoms in 12 grams of carbon-12 (the most common isotope of carbon). [19] The term gram-molecule was formerly used to mean one mole of molecules, and gram-atom for one mole of atoms. [15]
The electron affinity (E ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. X(g) + e − → X − (g) + energy. This differs by sign from the energy change of electron capture ionization. [1]
A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν. Electrons in atoms and molecules can change (make transitions in) energy levels by emitting or absorbing a photon (of electromagnetic radiation), whose energy must be exactly equal to the energy ...
The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.