Search results
Results from the WOW.Com Content Network
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [ 1 ] [ 2 ] It is generally divided into two subfields: discrete optimization and continuous optimization .
Constraint toolkits are a way for embedding constraints into an imperative programming language. However, they are only used as external libraries for encoding and solving problems. An approach in which constraints are integrated into an imperative programming language is taken in the Kaleidoscope programming language.
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.
Constraint component (Con) provides the criteria, in the form of strictly ranked violable constraints, used to decide between candidates, and; Evaluator (Eval) chooses the optimal candidate based on the constraints, and this candidate is the output. Optimality theory assumes that these components are universal.
This criterion maximizes the discrepancy between two proposed models at the design locations. [10] Other optimality-criteria are concerned with the variance of predictions: G-optimality A popular criterion is G-optimality, which seeks to minimize the maximum entry in the diagonal of the hat matrix X(X'X) −1 X'. This has the effect of ...