Search results
Results from the WOW.Com Content Network
Detonation (from Latin detonare 'to thunder down/forth') [1] is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it.
If detonation is allowed to persist under extreme conditions or over many engine cycles, engine parts can be damaged or destroyed. The simplest deleterious effects are typically particle wear caused by moderate knocking, which may further ensue through the engine's oil system and cause wear on other parts before being trapped by the oil filter.
The duration of the blast wave depends on the type of explosive material and the distance from the point of detonation. The blast wave progresses from the source of explosion as a sphere of compressed and rapidly expanding gases, which displaces an equal volume of air at a very high velocity. The velocity of the blast wave in air may be ...
The phenomenon is exploited in pulse detonation engines, because a detonation produces a more efficient combustion of the reactants than a deflagration does, i.e. giving a higher yields. Such engines typically employ a Shchelkin spiral in the combustion chamber to facilitate the deflagration to detonation transition. [2] [3]
Addressing questions two and three required weapon-scientists and engineers to develop methods and terminologies to estimate and describe warhead-response to abnormal environments (e.g., identified initiating events) with a focus on the potential for release or dispersal of special nuclear material (SNM).
It states that the detonation propagates at a velocity at which the reacting gases just reach sonic velocity (in the frame of the leading shock wave) as the reaction ceases. [ 1 ] [ 2 ] David Chapman [ 3 ] and Émile Jouguet [ 4 ] originally (c. 1900) stated the condition for an infinitesimally thin detonation.
Underground nuclear testing is the test detonation of nuclear weapons that is performed underground. When the device being tested is buried at sufficient depth, the nuclear explosion may be contained, with no release of radioactive materials to the atmosphere.
Typical detonation velocities for organic dust mixtures range from 1400 to 1650 m/s. [2] Gas explosions can either deflagrate or detonate based on confinement; detonation velocities are generally around 1700 m/s [3] [4] [5] but can be as high as 3000 m/s. [6] Solid explosives often have detonation velocities ranging beyond 4000 m/s to 10300 m/s.