Search results
Results from the WOW.Com Content Network
Ion A. Atanasiu (25 September 1894 – 19 December 1978) was the founder of the Romanian School of Electrochemistry and the first to teach this subject in Romania. He is known as the originator of cerimetry , an analytical method based on Cerium (IV) as titration reagent .
Cerimetry or cerimetric titration, also known as cerate oximetry, is a method of volumetric chemical analysis developed by Ion Atanasiu. It is a redox titration in which an iron(II)–1,10-phenanthroline complex color change indicates the end point. Ferroin can be reversibly discolored in its oxidized form upon titration with a Ce 4+ solution ...
Back titration is a titration done in reverse; instead of titrating the original sample, a known excess of standard reagent is added to the solution, and the excess is titrated. A back titration is useful if the endpoint of the reverse titration is easier to identify than the endpoint of the normal titration, as with precipitation reactions
العربية; Azərbaycanca; বাংলা; Български; Català; Čeština; Deutsch; Español; Euskara; فارسی; Français; 한국어; Bahasa Indonesia
An indicator capable of producing an unambiguous color change is usually used to detect the end-point of the titration. Complexometric titrations are those reactions where a simple ion is transformed into a complex ion and the equivalence point is determined by using metal indicators or electrometrically. [1]
The volumetric titration is based on the same principles as the coulometric titration, except that the anode solution above now is used as the titrant solution. The titrant consists of an alcohol (ROH), base (B), SO 2 and a known concentration of I 2. Pyridine has been used as the base in this case. One mole of I 2 is consumed for each mole of ...
Fig. 15. Titration plot of back-titration of excess EDTA with Cu(II) in NH 3 /NH 4 Cl buffered solution. Direct EDTA titrations with metal ions are possible when reaction kinetics are fast, for example zinc, copper, calcium and magnesium. However, with slower reaction kinetics such as those exhibited by cobalt and nickel, back-titrations are used.
For a strong acid-strong base titration monitored by pH, we have at any i'th point in the titration = [+] [] where K w is the water autoprotolysis constant.. If titrating an acid of initial volume and concentration [+] with base of concentration [], then at any i'th point in the titration with titrant volume ,