enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    Electron scattering techniques have yielded clues as to the internal structure of light nuclides. Proton-neutron pairs experience a strongly repulsive component of the nuclear force within ≈ 0.5 fm (see "Space between nucleons" above). As nucleons cannot pack any closer, nearly all nuclei have the same central density. [6]

  3. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    A model of an atomic nucleus showing it as a compact bundle of protons (red) and neutrons (blue), the two types of nucleons.In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics.

  4. Nuclear structure - Wikipedia

    en.wikipedia.org/wiki/Nuclear_structure

    A nucleus with full shells is exceptionally stable, as will be explained. As with electrons in the electron shell model, protons in the outermost shell are relatively loosely bound to the nucleus if there are only few protons in that shell, because they are farthest from the center of the nucleus. Therefore, nuclei which have a full outer ...

  5. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    Inside a nucleus, on the other hand, combined protons and neutrons (nucleons) can be stable or unstable depending on the nuclide, or nuclear species. Inside some nuclides, a neutron can turn into a proton (producing other particles) as described above; the reverse can happen inside other nuclides, where a proton turns into a neutron (producing ...

  6. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Thus, every proton in the nucleus must occupy a quantum state different from all other protons, and the same applies to all neutrons of the nucleus and to all electrons of the electron cloud. [ 45 ] A nucleus that has a different number of protons than neutrons can potentially drop to a lower energy state through a radioactive decay that causes ...

  7. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    Therefore, a nucleus with an even number of protons and an even number of neutrons has 0 spin and positive parity. A nucleus with an even number of protons and an odd number of neutrons (or vice versa) has the parity of the last neutron (or proton), and the spin equal to the total angular momentum of this neutron (or proton).

  8. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The mass of the neutron is greater than that of the proton by 1.293 32 MeV/c 2, [25] hence the neutron's mass provides energy sufficient for the creation of the proton, electron, and anti-neutrino. In the decay process, the proton, electron, and electron anti-neutrino conserve the energy, charge, and lepton number of the neutron. [ 26 ]

  9. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    Isotope half-lives. The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. Isotopes are nuclides with the same number of protons but differing numbers of neutrons; that is, they have the same atomic number and are therefore the same chemical element. Isotopes neighbor ...