enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    The usual treatment (e.g., Albert Einstein's original work) is based on the invariance of the speed of light. However, this is not necessarily the starting point: indeed (as is described, for example, in the second volume of the Course of Theoretical Physics by Landau and Lifshitz), what is really at stake is the locality of interactions: one supposes that the influence that one particle, say ...

  3. Lorentz covariance - Wikipedia

    en.wikipedia.org/wiki/Lorentz_covariance

    In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also ...

  4. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    However, these also count as symmetries forced by special relativity since they leave the spacetime interval invariant. A combination of a rotation with a boost, followed by a shift in spacetime, is an inhomogeneous Lorentz transformation, an element of the Poincaré group, which is also called the inhomogeneous Lorentz group.

  5. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    A quantity that is invariant under Lorentz transformations is known as a Lorentz scalar. Writing the Lorentz transformation and its inverse in terms of coordinate differences, where one event has coordinates (x 1, t 1) and (x ′ 1, t ′ 1), another event has coordinates (x 2, t 2) and (x ′ 2, t ′ 2), and the differences are defined as

  6. Lorentz scalar - Wikipedia

    en.wikipedia.org/wiki/Lorentz_scalar

    A simple Lorentz scalar in Minkowski spacetime is the spacetime distance ("length" of their difference) of two fixed events in spacetime. While the "position"-4-vectors of the events change between different inertial frames, their spacetime distance remains invariant under the corresponding Lorentz transformation.

  7. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for time dilation: ... The Lorentz transformations also ... ds 2 is known as the spacetime interval. This inner product is invariant under the ...

  8. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...

  9. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.