enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gromov's theorem on groups of polynomial growth - Wikipedia

    en.wikipedia.org/wiki/Gromov's_theorem_on_groups...

    The order of growth is then the least degree of any such polynomial function p. A nilpotent group G is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index.

  3. Growth rate (group theory) - Wikipedia

    en.wikipedia.org/wiki/Growth_rate_(group_theory)

    The free abelian group has a polynomial growth rate of order d. The discrete Heisenberg group has a polynomial growth rate of order 4. This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem.

  4. Tits alternative - Wikipedia

    en.wikipedia.org/wiki/Tits_alternative

    The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result for linear groups (it reduces it to the case of solvable groups, which can be dealt with by elementary means).

  5. Geometric group theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_group_theory

    Theorems which use quasi-isometry invariants to prove algebraic results about groups, for example: Gromov's polynomial growth theorem; Stallings' ends theorem; Mostow rigidity theorem. Quasi-isometric rigidity theorems, in which one classifies algebraically all groups that are quasi-isometric to some given group or metric space.

  6. Quasi-isometry - Wikipedia

    en.wikipedia.org/wiki/Quasi-isometry

    Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n. According to Gromov's theorem, a group of polynomial growth is virtually nilpotent, i.e. it has a nilpotent subgroup of finite index.

  7. Gromov's theorem - Wikipedia

    en.wikipedia.org/wiki/Gromov's_theorem

    Gromov's theorem may mean one of a number of results of Mikhail Gromov: One of Gromov's compactness theorems: Gromov's compactness theorem (geometry) in Riemannian geometry; Gromov's compactness theorem (topology) in symplectic topology; Gromov's Betti number theorem Gromov–Ruh theorem on almost flat manifolds

  8. Hyperbolic group - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_group

    An interesting example is the modular group = (): it acts on the tree given by the 1-skeleton of the associated tessellation of the hyperbolic plane and it has a finite index free subgroup (on two generators) of index 6 (for example the set of matrices in which reduce to the identity modulo 2 is such a group).

  9. Mikhael Gromov (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Mikhael_Gromov_(mathematician)

    Gromov's compactness theorem had a deep impact on the field of geometric group theory. He applied it to understand the asymptotic geometry of the word metric of a group of polynomial growth , by taking the limit of well-chosen rescalings of the metric.

  1. Related searches gromov's theorem for polynomial growth theory and find the slope given two points

    gromov's theorem for polynomial growthgromov's theorem