enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    A quadrantal spherical triangle together with Napier's circle for use in his mnemonics. A quadrantal spherical triangle is defined to be a spherical triangle in which one of the sides subtends an angle of π /2 radians at the centre of the sphere: on the unit sphere the side has length π /2.

  3. John Napier - Wikipedia

    en.wikipedia.org/wiki/John_Napier

    A quadrantal spherical triangle together with Napier's circle for use in his mnemonics. A quadrantal spherical triangle is defined to be a spherical triangle in which one of the sides subtends an angle of π /2 radians at the centre of the sphere: on the unit sphere the side has length π /2.

  4. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  5. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.

  6. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Because these are double angles, each of q, r, and s represents two applications of the rotation implied by an edge of the spherical triangle. From the definitions, it follows that srq = uw −1 wv −1 vu −1 = 1, which tells us that the composition of these rotations is the identity transformation. In particular, rq = s −1 gives us

  7. List of spherical symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_spherical_symmetry...

    Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order.

  8. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    Consider the projective (spherical) triangle at the point ; the vertices of this projective triangle are the three lines that join with the other three vertices of the tetrahedron. The edges will have spherical lengths α i , j , α i , k , α i , l {\displaystyle \alpha _{i,j},\alpha _{i,k},\alpha _{i,l}} and the respective opposite spherical ...

  9. Octant of a sphere - Wikipedia

    en.wikipedia.org/wiki/Octant_of_a_sphere

    The spherical octant itself is the intersection of the sphere with one octant of space. Uniquely among spherical triangles, the octant is its own polar triangle. [2] The octant can be parametrized using a rational quartic Bézier triangle. [3] The solid angle subtended by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [4]