enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.

  3. Reciprocal length - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_length

    Spatial frequency is a reciprocal length, which can thus be used as a measure of energy, usually of a particle. For example, the reciprocal centimetre, cm1, is an energy unit equal to the energy of a photon with a wavelength of 1 cm. That energy amounts to approximately 1.24 × 10 −4 eV or 1.986 × 10 −23 J.

  4. Electrical length - Wikipedia

    en.wikipedia.org/wiki/Electrical_length

    The phase velocity at which electrical signals travel along a transmission line or other cable depends on the construction of the line. Therefore, the wavelength corresponding to a given frequency varies in different types of lines, thus at a given frequency different conductors of the same physical length can have different electrical lengths.

  5. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. [3] [4] The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal.

  6. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm1 and wavelengths of approximately 30 to 3 μm.

  7. Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroscopy

    where Δν̃ is the Raman shift expressed in wavenumber, λ 0 is the excitation wavelength, and λ 1 is the Raman spectrum wavelength. Most commonly, the unit chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm1). Since wavelength is often expressed in units of nanometers (nm), the formula above can scale for this ...

  8. Molar absorption coefficient - Wikipedia

    en.wikipedia.org/wiki/Molar_absorption_coefficient

    The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1cm1 or L⋅mol −1cm1 (the latter two units are both equal to 0.1 m 2 /mol). In older literature, the cm 2 /mol is sometimes used; 1 M −1cm1 equals 1000 cm 2 /mol.

  9. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.