Search results
Results from the WOW.Com Content Network
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is
The Wiener process is widely considered the most studied and central stochastic process in probability theory. [1] [2] [3] In probability theory and related fields, a stochastic (/ s t ə ˈ k æ s t ɪ k /) or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the ...
The most common formulation of a branching process is that of the Galton–Watson process.Let Z n denote the state in period n (often interpreted as the size of generation n), and let X n,i be a random variable denoting the number of direct successors of member i in period n, where X n,i are independent and identically distributed random variables over all n ∈{ 0, 1, 2, ...} and i ∈ {1 ...
In two dimensions, the average number of points the same random walk has on the boundary of its trajectory is r 4/3. This corresponds to the fact that the boundary of the trajectory of a Wiener process is a fractal of dimension 4/3, a fact predicted by Mandelbrot using simulations but proved only in 2000 by Lawler, Schramm and Werner. [16]
Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.
A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.
In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the probability of drawing one color or another ...
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.