Search results
Results from the WOW.Com Content Network
In oceanography wind fetch, also known as fetch length or simply fetch, is the length of water over which a given wind has blown without obstruction. [ 2 ] [ 3 ] Fetch is used in geography and meteorology and its effects are usually associated with sea state and when it reaches shore it is the main factor that creates storm surge which leads to ...
The output of a wind wave model is a description of the wave spectra, with amplitudes associated with each frequency and propagation direction. Results are typically summarized by the significant wave height , which is the average height of the one-third largest waves, and the period and propagation direction of the dominant wave.
In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land.
For confined environments such as marshes or small fetches, a simplified empirical model for wind setup has been proposed by Algra et al (2023). [5] This model was designed to estimate wind setup in the Suisun Marsh, where fetch lengths are smaller and shallow water depth conditions apply. The equation is expressed as:
Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC). Waves are generated primarily by wind passing over the sea's surface and also by tidal forces, temperature variations, and other factors.
In physical oceanography and fluid mechanics, the Miles-Phillips mechanism describes the generation of wind waves from a flat sea surface by two distinct mechanisms. Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind.
Five-day forecast of the significant wave height for the North Atlantic on November 22, 2008, by NOAA's Wavewatch III model. This wind wave model generates forecasts of wave conditions through the use of wave-action conservation and the wind-field forecasts (from weather forecasting models).
deep water – for a water depth larger than half the wavelength, h > 1 / 2 λ, the phase speed of the waves is hardly influenced by depth (this is the case for most wind waves on the sea and ocean surface), [9]