Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business. Research in discrete mathematics increased in the latter half of the twentieth century partly due to the development of digital computers which operate in "discrete" steps and ...
Note: The empty set symbol ∅ looks similar, but is unrelated to the Greek letter. or represents: the golden ratio 1.618... in mathematics, art, and architecture; Euler's totient function in number theory; the argument of a complex number in mathematics; the value of a plane angle in physics and mathematics
Intersection of three sets: Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets
König's theorem (set theory, mathematical logic) Kövari–Sós–Turán theorem (graph theory) Kraft–McMillan theorem (coding theory) Kramers' theorem ; Krein–Milman theorem (mathematical analysis, discrete geometry) Krener's theorem (control theory) Kronecker's theorem (Diophantine approximation) Kronecker–Weber theorem (number theory)
A simple example are upper sets; i.e. sets that contain all elements that are above them in the order. Formally, the upper closure of a set S in a poset P is given by the set {x in P | there is some y in S with y ≤ x}. A set that is equal to its upper closure is called an upper set. Lower sets are defined dually.