enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC is an open source project, developed by the community and has been fiscally sponsored by NumFOCUS. [ 9 ] PyMC has been used to solve inference problems in several scientific domains, including astronomy , [ 10 ] [ 11 ] epidemiology , [ 12 ] [ 13 ] molecular biology, [ 14 ] crystallography, [ 15 ] [ 16 ] chemistry , [ 17 ] ecology [ 18 ...

  3. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  4. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    An example of Bayesian design for linear dynamical model discrimination is given in Bania (2019). [9] Since (;), was difficult to calculate, its lower bound has been used as a utility function. The lower bound is then maximized under the signal energy constraint.

  5. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  6. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().

  7. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters.

  8. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Such inference is analytically intractable for many demographic models, but the authors presented ways of simulating coalescent trees under the putative models. A sample from the posterior of model parameters was obtained by accepting/rejecting proposals based on comparing the number of segregating sites in the synthetic and real data.

  9. Template:Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Template:Bayesian_statistics

    Model building; Conjugate prior; Linear regression; Empirical Bayes; Hierarchical model; Posterior approximation; Markov chain Monte Carlo; Laplace's approximation; Integrated nested Laplace approximations; Variational inference; Approximate Bayesian computation; Estimators; Bayesian estimator; Credible interval; Maximum a posteriori estimation ...