enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor product of modules - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_modules

    In particular, any tensor product of R-modules can be constructed, if so desired, as a quotient of a tensor product of abelian groups by imposing the R-balanced product property. More category-theoretically, let σ be the given right action of R on M ; i.e., σ( m , r ) = m · r and τ the left action of R of N .

  3. Tor functor - Wikipedia

    en.wikipedia.org/wiki/Tor_functor

    0 (A, B) ≅ A ⊗ R B for any right R-module A and left R-module B. Tor R i (A, B) = 0 for all i > 0 if either A or B is flat (for example, free) as an R-module. In fact, one can compute Tor using a flat resolution of either A or B; this is more general than a projective (or free) resolution. [5] There are converses to the previous statement ...

  4. Derived tensor product - Wikipedia

    en.wikipedia.org/wiki/Derived_tensor_product

    In particular, () is the usual tensor product of modules M and N over R. Geometrically, the derived tensor product corresponds to the intersection product (of derived schemes ). Example : Let R be a simplicial commutative ring , Q ( R ) → R be a cofibrant replacement, and Ω Q ( R ) 1 {\displaystyle \Omega _{Q(R)}^{1}} be the module of ...

  5. Symmetric monoidal category - Wikipedia

    en.wikipedia.org/wiki/Symmetric_monoidal_category

    The tensor product is the direct product of objects, and any terminal object (empty product) is the unit object. The category of bimodules over a ring R is monoidal (using the ordinary tensor product of modules), but not necessarily symmetric. If R is commutative, the category of left R-modules is symmetric monoidal. The latter example class ...

  6. Bimodule - Wikipedia

    en.wikipedia.org/wiki/Bimodule

    In this interpretation, the category End(R) = Bimod(R, R) is exactly the monoidal category of R-R-bimodules with the usual tensor product over R the tensor product of the category. In particular, if R is a commutative ring, every left or right R-module is canonically an R-R-bimodule, which gives a monoidal embedding of the category R-Mod into ...

  7. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Monoidal functors are the functors between monoidal categories that preserve the tensor product and monoidal natural transformations are the natural transformations, between those functors, which are "compatible" with the tensor product. Every monoidal category can be seen as the category B(∗, ∗) of a bicategory B with only one object ...

  8. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  9. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    For example it is common to take A to be Z/2Z, so that coefficients are modulo 2. This becomes straightforward in the absence of 2- torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers b i of X and the Betti numbers b i , F with coefficients in a field F .