enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    The square root of the Gelfond–Schneider constant is the transcendental number = 1.632 526 919 438 152 844 77.... This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence.

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test the divisibility of a number by a power of ... Change all occurrences of 7, 8 or ... The number 510,517,813 leaves a remainder of 1 on dividing by 7. Proof of ...

  5. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted φ {\displaystyle \varphi } or ϕ {\displaystyle \phi } ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − ...

  6. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;

  7. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    The number √ 2 is irrational. In mathematics, the irrational numbers (in-+ rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers.

  8. Play Hearts Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/hearts

    Enjoy a classic game of Hearts and watch out for the Queen of Spades!

  9. Square root of 7 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_7

    A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and somewhat more than 2.64, respectively. The square root of 7 is the positive real number that, when multiplied by itself, gives the prime number 7.