enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  4. Controversy over Cantor's theory - Wikipedia

    en.wikipedia.org/wiki/Controversy_over_Cantor's...

    [2] His new proof uses his diagonal argument to prove that there exists an infinite set with a larger number of elements (or greater cardinality) than the set of natural numbers N = {1, 2, 3, ...}. This larger set consists of the elements ( x 1 , x 2 , x 3 , ...), where each x n is either m or w . [ 3 ]

  5. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  6. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is c = 2 ℵ 0 > ℵ 0 . {\displaystyle {\mathfrak {c}}=2^{\aleph _{0}}>\aleph _{0}.} This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.

  7. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.

  8. Detroit Lions Take Away Season Tickets from Fan Who Got into ...

    www.aol.com/lifestyle/detroit-lions-away-season...

    The Detroit Lions have taken away a fan's season tickets after he was involved in a verbal altercation with Green Bay Packers coach Matt LaFleur.

  9. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument. The title of the article, " On a Property of the Collection of All Real Algebraic Numbers " ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen"), refers to its first theorem: the set ...