Search results
Results from the WOW.Com Content Network
The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software. The direct stiffness method originated in the field of aerospace. Researchers looked at various approaches for analysis of complex airplane ...
For a body with multiple DOF, to calculate a particular direct-related stiffness (the diagonal terms), the corresponding DOF is left free while the remaining should be constrained. Under such a condition, the above equation can obtain the direct-related stiffness for the degree of unconstrained freedom.
Stiffness depends upon material properties and geometry. The stiffness of a structural element of a given material is the product of the material's Young's modulus and the element's second moment of area. Stiffness is measured in force per unit length (newtons per millimetre or N/mm), and is equivalent to the 'force constant' in Hooke's Law.
Otherwise methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method are used. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.
The origin of finite method can be traced to the matrix analysis of structures [1] [2] where the concept of a displacement or stiffness matrix approach was introduced. Finite element concepts were developed based on engineering methods in 1950s.
By examining the formulas for area moment of inertia, we can see that the stiffness of this beam will vary approximately as the third power of the radius or height. Thus the second moment of area will vary approximately as the inverse of the cube of the density, and performance of the beam will depend on Young's modulus divided by density cubed .
Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [ 2 ] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks.
The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.