Search results
Results from the WOW.Com Content Network
[12] Numbers in circles indicate counts of carbon atoms in molecules, C6 is glucose C 6 H 12 O 6, C1 carbon dioxide CO 2. Mitochondrial outer membrane is omitted. According to some newer sources, the ATP yield during aerobic respiration is not 36–38, but only about 30–32 ATP molecules / 1 molecule of glucose [12], because:
There are several types of iron–sulfur cluster. The simplest kind found in the electron transfer chain consists of two iron atoms joined by two atoms of inorganic sulfur; these are called [2Fe–2S] clusters. The second kind, called [4Fe–4S], contains a cube of four iron atoms and four sulfur atoms.
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required. This is known as the investment phase, in which a total of two ATP molecules are consumed. At the end of glycolysis, the total yield of ATP is four molecules, but the net gain is two ATP molecules.
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
4 Fe 2+ – cytochrome c + 4 H + + O 2 → 4 Fe 3+ – cytochrome c + 2 H 2 O ΔG o ' = - 218 kJ/mol, E o ' = +565 mV. Two electrons are passed from two cytochrome c's, through the Cu A and cytochrome a sites to the cytochrome a 3 –Cu B binuclear center, reducing the metals to the Fe 2+ form and Cu +.
The glyoxylate shunt pathway is an alternative to the tricarboxylic acid (TCA) cycle, for it redirects the pathway of TCA to prevent full oxidation of carbon compounds, and to preserve high energy carbon sources as future energy sources. This pathway occurs only in plants and bacteria and transpires in the absence of glucose molecules.
In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane.