enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  3. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    These four numbers specify the unique and complete quantum state of any single electron in the atom, and they combine to compose the electron's wavefunction, or orbital. When solving to obtain the wave function, the Schrödinger equation resolves into three equations that lead to the first three quantum numbers, meaning that the three equations ...

  4. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    The four quantum numbers n, ℓ, m, and s specify the complete and unique quantum state of a single electron in an atom, called its wave function or orbital. Two electrons belonging to the same atom cannot have the same values for all four quantum numbers, due to the Pauli exclusion principle .

  5. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    During the period between 1916 and 1925, much progress was being made concerning the arrangement of electrons in the periodic table.In order to explain the Zeeman effect in the Bohr atom, Sommerfeld proposed that electrons would be based on three 'quantum numbers', n, k, and m, that described the size of the orbit, the shape of the orbit, and the direction in which the orbit was pointing. [10]

  6. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    is the principal quantum number of an energy level for the atomic electron transition. Note: Here, n 2 > n 1 {\displaystyle n_{2}>n_{1}} By setting n 1 {\displaystyle n_{1}} to 1 and letting n 2 {\displaystyle n_{2}} run from 2 to infinity, the spectral lines known as the Lyman series converging to 91 nm are obtained, in the same manner:

  7. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    This equation is obtained from combining the Rydberg formula for any hydrogen-like element (shown below) with E = hν = hc / λ assuming that the principal quantum number n above = n 1 in the Rydberg formula and n 2 = ∞ (principal quantum number of the energy level the electron descends from, when emitting a photon).

  8. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    An electron shell is the set of allowed states that share the same principal quantum number, n, that electrons may occupy. In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two

  9. Term symbol - Wikipedia

    en.wikipedia.org/wiki/Term_symbol

    Quantities with a subscript 1 are for the parent ion, n and ℓ are principal and orbital quantum numbers for the excited electron, K and J are quantum numbers for = + and = + where and are orbital angular momentum and spin for the excited electron respectively. “o” represents a parity of excited atom.