Ad
related to: basal metabolic rate models
Search results
Results from the WOW.Com Content Network
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. [1] It is reported in energy units per unit time ranging from watt (joule/second) to ml O 2 /min or joule per hour per kg body mass J/(h·kg).
Kleiber's plot comparing body size to metabolic rate for a variety of species. [1]Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observation that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 3 ⁄ 4 power of the animal's mass.
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
Basal metabolic rate (BMR) accounts for about 60% of the calories you burn each day. To calculate your BMR, you should use the Mifflin-St. Jeor equation, which is the most accurate.
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
Kleiber found that an organism's basal metabolic rate could be predicted by taking 3/4 the power of the organism's body weight. This finding was noteworthy because the inversion of the scaling exponent, between 0.2 and 0.33, also demonstrated the scaling for both lifespan and metabolic rate, and was colloquially called the "mouse-to-elephant ...
Hu and Hayton in 2001 discussed whether the basal metabolic rate scale is a 2 ⁄ 3 or 3 ⁄ 4 power of body mass. The exponent of 3 ⁄ 4 might be used for substances that are eliminated mainly by metabolism, or by metabolism and excretion combined, while 2 ⁄ 3 might apply for drugs that are eliminated mainly by renal excretion. [38]
Ad
related to: basal metabolic rate models