enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called Bragg diffraction. It is similar to what occurs when waves are scattered from a diffraction grating. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes.

  3. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    Bragg diffraction [9]: 16 Two beams with identical wavelength and phase approach a crystalline solid and are scattered off two different atoms within it. The lower beam traverses an extra length of 2dsinθ. Constructive interference occurs when this length is equal to an integer multiple of the wavelength of the radiation.

  4. Electron diffraction - Wikipedia

    en.wikipedia.org/wiki/Electron_diffraction

    Figure 1: Selected area diffraction pattern of a twinned austenite crystal in a piece of steel. Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. [a] It occurs due to elastic scattering, when there is no change in the energy of the electrons. [1]:

  5. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  6. Radio propagation - Wikipedia

    en.wikipedia.org/wiki/Radio_propagation

    Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]

  7. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    Fraunhofer diffraction occurs when: (Fraunhofer condition) W {\displaystyle W} – The largest size of a diffracting aperture or slit, λ {\displaystyle \lambda } – Wavelength, L {\displaystyle L} – The smaller of the two distances, one is between the diffracting aperture and the plane of observation and the other is between the diffracting ...

  8. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).

  9. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).