enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    Modulo. In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the modulus of the operation). Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the ...

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = be mod m. From the definition of division, it follows that 0 ≤ c < m . For example, given b = 5, e = 3 and m = 13, dividing 53 = 125 by 13 leaves a remainder of c = 8 .

  4. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    A number x 0 is said to be a fixed point of a function f(x) if f(x 0) = x 0; in other words, if f leaves x 0 fixed. The fixed points of a function can be easily found graphically: they are simply the x coordinates of the points where the graph of f(x) intersects the graph of the line y = x. For example, the fixed points of the function T 3 (x ...

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  6. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Since of these only g(1) and g(7) are 0 mod 16 we can lift only 1 and 7 to modulo 16, giving 1, 7, 9, and 15 mod 16. Of these, only 7 and 9 give g(x) = 0 mod 32, so these can be raised giving 7, 9, 23, and 25 mod 32. It turns out that for every integer k ≥ 3, there are four liftings of 1 mod 2 to a root of g(x) mod 2 k.

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The constants R mod N and R 3 mod N can be generated as REDC(R 2 mod N) and as REDC((R 2 mod N)(R 2 mod N)). The fundamental operation is to compute REDC of a product. When standalone REDC is needed, it can be computed as REDC of a product with 1 mod N. The only place where a direct reduction modulo N is necessary is in the precomputation of R ...

  8. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, Restated, this says that for even n, the double factorial [2] is while for odd n it is For example, 9‼ = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0‼ ...

  9. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.