enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld showed that, if electronic orbits ...

  3. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model is a relatively primitive model of the hydrogen atom, compared to the valence shell model. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics and thus may be considered to be an obsolete scientific theory.

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈɔːrbɪtəl /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

  5. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Electron configuration. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s, and 2p subshells are occupied by ...

  6. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The oxygen atomic orbitals are labeled according to their symmetry as a 1 for the 2s orbital and b 1 (2p x), b 2 (2p y) and a 1 (2p z) for the three 2p orbitals. The two hydrogen 1s orbitals are premixed to form a 1 (σ) and b 2 (σ*) MO. Mixing takes place between same-symmetry orbitals of comparable energy resulting a new set of MO's for water:

  7. History of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/History_of_quantum_mechanics

    The way the atomic orbitals on different atoms combine to form molecular orbitals determines the structure and strength of chemical bonds between atoms. The field of quantum chemistry was pioneered by physicists Walter Heitler and Fritz London, who published a study of the covalent bond of the hydrogen molecule in 1927.

  8. History of spectroscopy - Wikipedia

    en.wikipedia.org/wiki/History_of_spectroscopy

    Bohr had been working on his atom during this period, but Bohr's model had only a single ground state and no spectra until he incorporated the Nicholson model and referenced the Nicholson papers in his model of the atom. [56] [57] [58] In 1913, Bohr [59] formulated his quantum mechanical model of atom. This stimulated empirical term analysis.

  9. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The Bohr model was later replaced by quantum mechanics in which the electron occupies an atomic orbital rather than an orbit, but the allowed energy levels of the hydrogen atom remained the same as in the earlier theory. Spectral emission occurs when an electron transitions, or jumps, from a higher energy state to a lower energy state.