Search results
Results from the WOW.Com Content Network
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).
Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit. Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 1 / 2 × 2 1 / 2 = 11 1 / 4
Product of two numbers. Originally, a product was and is still the result of the multiplication of two or more numbers. For example, 15 is the product of 3 and 5. The fundamental theorem of arithmetic states that every composite number is a product of prime numbers, that is unique up to the order of the factors.
For example, 3 × x 2 is written as 3x 2, and 2 × x × y is written as 2xy. [5] Sometimes, multiplication symbols are replaced with either a dot or center-dot, so that x × y is written as either x. y or x · y. Plain text, programming languages, and calculators also use a single asterisk to represent the multiplication symbol, [6] and it must ...
A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic. The oldest and simplest method, known since antiquity as long multiplication or grade-school ...
n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
Trachtenberg system. The Trachtenberg system is a system of rapid mental calculation. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. It was developed by the Ukrainian engineer Jakow Trachtenberg in order to keep his mind occupied while being in a Nazi concentration ...
(For example, the sixth row is read as: 0 ⁄ 6 1 ⁄ 2 3 ⁄ 6 → 756). Like in multiplication shown before, the numbers are read from right to left and add the diagonal numbers from top-right to left-bottom (6 + 0 = 6; 3 + 2 = 5; 1 + 6 = 7). The largest number less than the current remainder, 1078 (from the eighth row), is found.